The guanine exchange factor vav controls axon growth and guidance during Drosophila development.
نویسندگان
چکیده
The Vav proteins are guanine exchange factors (GEFs) that trigger the activation of the Rho GTPases in general and the Rac family in particular. While the role of the mammalian vav genes has been extensively studied in the hematopoietic system and the immune response, there is little information regarding the role of vav outside of these systems. Here, we report that the single Drosophila vav homolog is ubiquitously expressed during development, although it is enriched along the embryonic ventral midline and in the larval eye discs and brain. We have analyzed the role that vav plays during development by generating Drosophila null mutant alleles. Our results indicate that vav is required during embryogenesis to prevent longitudinal axons from crossing the midline. Later on, during larval development, vav is required within the axons to regulate photoreceptor axon targeting to the optic lobe. Finally, we demonstrate that adult vav mutant escapers, which exhibit coordination problems, display axon growth defects in the ellipsoid body, a brain area associated with locomotion control. In addition, we show that vav interacts with other GEFs known to act downstream of guidance receptors. Thus, we propose that vav acts in coordination with other GEFs to regulate axon growth and guidance during development by linking guidance signals to the cytoskeleton via the modulation of Rac activity.
منابع مشابه
Trio Combines with Dock to Regulate Pak Activity during Photoreceptor Axon Pathfinding in Drosophila
Correct pathfinding by Drosophila photoreceptor axons requires recruitment of p21-activated kinase (Pak) to the membrane by the SH2-SH3 adaptor Dock. Here, we identify the guanine nucleotide exchange factor (GEF) Trio as another essential component in photoreceptor axon guidance. Regulated exchange activity of one of the two Trio GEF domains is critical for accurate pathfinding. This GEF domain...
متن کاملThe Control of Semaphorin-1a-Mediated Reverse Signaling by Opposing Pebble and RhoGAPp190 Functions in Drosophila
Transmembrane semaphorins (Semas) serve evolutionarily conserved guidance roles, and some function as both ligands and receptors. However, the molecular mechanisms underlying the transduction of these signals to the cytoskeleton remain largely unknown. We have identified two direct regulators of Rho family small GTPases, pebble (a Rho guanine nucleotide exchange factor [GEF]) and RhoGAPp190 (a ...
متن کاملDe novo GMP synthesis is required for axon guidance in Drosophila.
Guanine nucleotides are key players in mediating growth-cone signaling during neural development. The supply of cellular guanine nucleotides in animals can be achieved via the de novo synthesis and salvage pathways. The de novo synthesis of guanine nucleotides is required for lymphocyte proliferation in animals. Whether the de novo synthesis pathway is essential for any other cellular processes...
متن کاملHsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1.
During development, netrin-1 is both an attractive and repulsive axon guidance cue and mediates its attractive function through the receptor Deleted in Colorectal Cancer (DCC). The activation of Rho guanosine triphosphatases within the extending growth cone facilitates the dynamic reorganization of the cytoskeleton required to drive axon extension. The Rac1 guanine nucleotide exchange factor (G...
متن کاملGTP exchange factor Vav regulates guided cell migration by coupling guidance receptor signalling to local Rac activation.
Guided cell migration is a key mechanism for cell positioning in morphogenesis. The current model suggests that the spatially controlled activation of receptor tyrosine kinases (RTKs) by guidance cues limits Rac activity at the leading edge, which is crucial for establishing and maintaining polarized cell protrusions at the front. However, little is known about the mechanisms by which RTKs cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2010